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Abstract

Range restriction is a common problem in organizational research and is an important statistical
artifact to correct for in meta-analysis. Historically, researchers have had to rely on range-
restriction corrections that only make use of range-restriction information for one variable, but
it is not uncommon for researchers to have such information for both variables in a correlation (e.g.,
when studying the correlation between two predictor variables). Existing meta-analytic methods
incorporating bivariate range-restriction corrections overlook their unique implications for esti-
mating the sampling variance of corrected correlations and for accurately assigning weights to
studies in individual-correction meta-analyses. We introduce new methods for computing
individual-correction and artifact-distribution meta-analyses using the bivariate indirect range
restriction (BVIRR; “Case V”) correction and describe improved methods for applying BVIRR
corrections that substantially reduce bias in parameter estimation. We illustrate the effectiveness of
these methods in a large-scale simulation and in meta-analyses of expatriate data. We provide R code
to implement the methods described in this article; more comprehensive and robust functions for
applying these methods are available in the psychmeta package for R.

Keywords
meta-analysis, reliability and validity, construct validation procedures

Range variation, also called selection bias or collider bias (Elwert & Winship, 2014), is a common
statistical phenomenon in which the variance of a variable in a sample is unrepresentative of the
variance of that variable in the desired target population (Sackett & Yang, 2000; e.g., the variance in
samples of job incumbents is smaller than the variance in the job applicant population from which
the incumbents were selected). Range variation is called range restriction when variance is smaller
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in a sample than in the target population and range enhancement when variance is larger in a sample
than in the target population (Schmidt & Hunter, 2015). Generally speaking, range restriction occurs
when the tail(s) of a distribution is (are) underrepresented, whereas range enhancement occurs when
the tail(s) of a distribution is (are) overrepresented. The “range restriction” terminology is more
familiar to researchers in organizational, psychological, and educational research, so we default it in
this article except where it becomes necessary to invoke range enhancement specifically, although
all procedures described here apply equally well to both types of range variation. Along with
sampling error and measurement error, range variation is one of the most important statistical
artifacts to correct in psychometric meta-analysis to obtain unbiased estimates of the mean effect
and accurately estimate the extent of effect-size heterogeneity (Hunter, Schmidt, & Le, 2006;
Schmidt & Hunter, 2015). In this article, we describe the relevance of range-variation corrections
for organizational research and present new correction methods when range-variation information is
known for both variables.

Corrections for range restriction are common in some areas of organizational, psychological, and
educational research. For example, primary studies and meta-analyses in the personnel selection and
staffing literatures frequently correct for range restriction in predictor constructs (Le & Schmidt,
2006; Sackett, Lievens, Berry, & Landers, 2007). In economics and some areas of strategy, Heck-
man’s (1979) correction for selection bias, which is fundamentally a range-restriction correction, is
highly influential and widely used. However, corrections for range restriction are rare in other
literatures, even though they may be highly relevant.

For example, researchers might be interested in the relationship between leader consideration
behaviors and follower satisfaction (DeRue, Nahrgang, Wellman, & Humphrey, 2011). One study
using a heterogeneous sample of employees from many organizations might find a strong relation-
ship between these variables, whereas another study using a single-organization sample finds a
negligible relationship. It is possible that much of this difference in results is caused by the second
sample being more restricted both on levels of leader consideration and on employee satisfaction
than in the heterogeneous sample. Differences in variance between the two types of samples may
cause conflicting conclusions regarding the strength of the relationship of interest; it is therefore
important that researchers consider the potential influence of range-variation artifacts in addition to
substantive theoretical explanations when they interpret variations in findings across studies.

Similarly, a meta-analysis of the relationship between job enrichment and employee well-being
might observe that the relationship between enrichment and well-being is highly variable across
studies, even after accounting for sampling error and measurement error (Humphrey, Nahrgang, &
Morgeson, 2007). Researchers might hypothesize substantive moderators for this relationship, but
an alternative explanation could be that the included samples differ in their mean levels and
variability on job enrichment and well-being. Accounting for this differential variability could
reveal there is little or no true residual variability. In this case, uncorrected range-restriction artifacts
could lead to an unnecessary search for moderators and cause much wasted effort.

At the firm level, a researcher might examine the relationship between organizational culture
variables and organizational financial performance. If they find no relationship, this may be because
their sample of organizations is restricted on either culture or performance and thus not represen-
tative of the broader market. Accounting for the nonrepresentativeness of between-firm variability
may support different conclusions than would be possible if only the unrepresentative sample data
were analyzed. If unrepresentative variances are a plausible cause of the unexpected finding, more
representative sampling of the broader market may be warranted to more accurately estimate the
firm-level relationship between culture and performance.

Although range restriction is often thought of as an artifact that simply attenuates effect-size
estimates, selection effects can also give rise to negative associations where null or positive associa-
tions should exist (or vice-versa). For example, Murray, Johnson, McGue, and Iacono (2014)
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convincingly demonstrated that the reason general mental ability and conscientiousness have exhib-
ited a negative relationship across many studies is that those studies were based on analyses of
range-restricted data from college students. College students are selected based on achievement
(among other things), which is positively correlated with both ability and conscientiousness. This
selection process (called “conditioning on a collider”; Rohrer, 2018) can induce a negative rela-
tionship between variables with a zero or even positive true correlation. Murray et al. showed that
ability—conscientiousness correlations were zero or positive in databases without achievement-
related selection effects, but became negatively correlated as the researchers created range restric-
tion in their data by only analyzing data from high-achievement individuals. This finding refutes the
intelligence compensation hypothesis (i.e., the idea that negative ability—conscientiousness correla-
tions are due to conscientiousness emerging as a way to compensate for lower ability) and instead
suggests statistical artifacts were the cause of the phenomenon. Thus, failing to account for range-
restriction effects in samples from selective environments runs the risk of misestimating the direc-
tions of associations and causing wasted effort in the development of a theory to explain an
artifactual trend.

Correcting for range restriction can also have a role in analyses conducted as part of meta-
analysis, such as heterogeneity analyses (e.g., estimating SD,,, SDs, 7, credibility intervals, and Q)
and sensitivity analyses (e.g., leave-one-out meta-analyses, bootstrapped meta-analyses, and publi-
cation or small-sample bias analyses). These analyses are best performed on effect sizes corrected
for artifacts, as the corrected effect sizes are better representations of the parameter distribution of
interest. Conducting analyses using observed effect sizes could provide misleading indications of
heterogeneity or sensitivity, as artifacts like range restriction may explain a great deal of the
variation across studies (Wiernik & Dahlke, in press). Many publication bias models also assume
homogeneity of the effect size parameters across studies. Range restriction introduces artifactual
heterogeneity, causing analyses of observed effect sizes to violate this assumption and potentially
suggesting the presence of publication bias where none exists (or vice-versa).

Additionally, comparing the results of meta-analyses of observed effect sizes to meta-analyses of
artifact-corrected effect sizes provides the meta-analyst with information about the potential pre-
valence and impact of range-restriction effects. If the observed and corrected results are highly
discrepant, the researcher has evidence to argue that selection effects are operating in his or her
sample of studies and can indicate to other scholars that these artifacts should be addressed when
designing sampling strategies for future studies conducted in that domain.

Approaches to Correcting for Range Restriction

Researchers are generally aware of the negative consequences of sampling biases (Rousseau & Fried,
2001), so we suspect that much of the reluctance to consider and correct for range restriction stems
from a perception that the statistical information needed to apply such corrections is not widely
available. However, this information may be more widely available than many researchers realize.
Table 1 describes five approaches for selecting a target population to use in range-variation corrections
and methods for estimating the amount of range restriction (as indexed by a u ratio; the ratio of the
sample standard deviation to the target population standard deviation) from different sources of
information. In the classic range-restriction scenario (Approach 1), local reference group information
is available (e.g., job applicants, pre-intervention measurements, or control groups), of which the
restricted sample is a subset. In this case, u ratios are computed by comparing restricted sample
standard deviations or reliability coefficients to corresponding values in the unrestricted reference
samples.' In Approach 2, researchers wish to generalize to a broader general or norm population (e.g.,
managers, all U.S. organizations). In this approach, u ratios are computed by comparing each sample’s
SD or reliability to the corresponding value for the measure’s development or norm sample reported in



(5001 "d ‘91.07) 23pLIPJOOAA PUE PIWIYIS ‘YO ‘97 UO paseq N Joj SE|NWLIO) PISE]-IUSIDIY0D A|IQEI[DY "SUONISII0D YYIAG YIM SOsA[eue-2IoW ‘UONDIDII0D
-|ENPIAIPUI 30U ‘UOIINGLIASIP-1DB}1IB Ul AJUO PasN 3q P|NOYs POYIBW SIY |, SIUSIIR0d Ajiqela.d wo.y 3unndwod 03 s|qease.d si SUORRIASP pJepuEls Wo.y soned n Suiandwod ‘9|qissod USYAA 930N

A_XXu _ —‘V\Amszs Xy — _\v\/ — umxiuwip

A_XXL — —‘vNSEx_ED - = amxuyese

‘BG |NW.IO}
yum paindwod sanjea >™n Buisn >mxiin syndwo? (qg
EEX._EQw \_Qm — unxiwp

N /XN = Py aaaym
1L -NZ
ﬁ AEENA%ZJSAT L N

— m\_ax._EQm Amm

wioup) __ wiuoup — pajoodp)

\ZHW\QEE:BKZVN — uuoup

'qZ e[nwJoy Jo ey Bjnwioy 3uisn “°Un ayndwo?) (
(%% — ) /(%% — ) N = Podn (qg

v&oouQm\_Qw — Ppajoodp
(1L - N /ligs (1 - NI/ = Pedas g
(1 — ) /("% — ) N = “en (qg

ES:Qm\.‘Qm — wioup ANN

A_XXL _ —‘V\AE,\E%XX; _ _\v\/ — Do) An__‘
mu:&&QQM \._Qm — [Pojp A.m_\

sajdwes |[e 4o 3sow ssoude

pasn saJnseaw awes ‘paJisap s| sajduwres

sso.Joe pajuasaddau a3ued [e30) BY) 03
uonrez|jesauad ‘suesw Jualaylp dAey sajdweg

.S9|dwes w.ou Jo juswdojpasp

9|qeJedwod yum Ing ‘sajdwes

SSOJJE pasn saJnseaw JuaJaylp ‘uoneindod

Jayloue 01 uonez||eJausd ou ‘papaau aJe
A31jIqelIBA [BIUSIYIP 40} SUOIIDDII0D AJUQ

sa|dwes |[e 4o Isow

Sso.Jde pasn saJunseaw awes ‘uonendod

Jayioue 01 uopezijelsuad ou ‘papasu dJe
A[IqeLIBA [BI3URIRYIP U0} A[UO SUONDALI0D)

sa|dwes ssoJde pasn saJnseawl

JURJBYIP JO dSwes ‘padisap sI uonendod
3UsWdO[9ASP/WLIOU 33 O) UONEZI[BIIUIL)

sa|dwies

Auew .o} 3|qe|ieAe sI uonew.oul dnous

95UdJajal [BDO] ‘paJisap si uonendod
Pa10113S34UN Y3 O) UOIIEZ|[BISUIL)

sisAjeue-e3owl
ur papnpur sa|dwes
wouy uopNqLIIsIp pajood

uonew.ojul
a|dwes juswdojarsp
JO WJou dunsedl

sisAeue-e3owl

u papnpur sa|dwes
woJj uonNnqLIsIp a8eJaAy

uonew.ojul

a|dwes juswdojarsp
JO WJoU dunsedl,

(sdnou8 uonuaassauisud
‘syuedijdde qol “8-9)
dnou3 aduausjad [ed07

sisAeue-e3aW Ul
papnjpul sajdwes |[e Joy
9|dwes |e101 pauiquioD (s)

sisAjeue-e3aW Ul
papnpaui ajdwes ageJaAy )

sisAjeue-e3awW Ul

papnpaui ajdwes ageJaAy (g)
uonejndod
WIoU JO [eJaUan) (¢4

UMEIP 3J9Mm
so|dwres paidLasaaun
yo1ym wouy uonendoy (1)

sejnw.Io4 oy n

a|qeol|ddy s| poyaaly USYAA

uopew.oyu| ajdwes
9dUa.9yaY JO 9d4nog

uonendoy 193.ue| yorouddy

"yo.Jeasoy [euoneziuedi( Ul SONBY N UoNDLISY-a8uey Sunewnsy pue uonendod 198.e] & 3unds|eg J0j saydeo.uddy | a|qe |



Dahlke and Wiernik 5

the measure’s test manual or other report (however, the researcher must be cautious and ensure that the
reference sample from such a source is relevant to the population of interest in their own study). For
variables such as age or organizational financial performance, population values can be drawn from
the census, government labor statistics, financial statistics databases, or similar sources. In Approaches
3 and 4, a meta-analyst is concerned that differential variability across samples contributing to
artifactual heterogeneity in effect sizes. They wish to remove this variability without affecting the
mean effect size. If the same measures are used in all or most of the included studies (e.g., Colquitt
et al., 2013; Wiernik & Kostal, 2019), « ratios can be computed by comparing each sample to the
average (“pooled”) within-sample SD or reliability coefficient (Approach 3). If a wide variety of
measures are used across studies,” u ratios can be computed by comparing sample SD or reliability
values to measure-development or norm samples (as in Approach 2), then recentering the resulting
Uy orm distribution to have a mean u = 1.0 (Approach 4). Finally, if samples in a meta-analysis differ in
their mean levels of a variable and a meta-analyst wishes to generalize to the broader combined total
sample of all studies included in a meta-analysis, « ratios can be computed by comparing each sample
SD or reliability value to the corresponding total (“mixture’) values that combine both within-sample
and between-sample variance on variables.

Each of the five approaches described in Table 1 share a common caveat—the u ratios that result
from them will only be as relevant as the samples and data from which they are derived. None of
these approaches offers a magic-bullet solution for computing a u ratio if no data on a relevant target
population SD or reliability coefficient is available: It is incumbent upon the researcher using any of
these approaches to ensure that the SD or reliability estimates for target/reference samples represent
the population to which the researcher wishes to generalize. Provided that one has vetted the
relevance of the samples contributing to the denominators of one’s u ratios, the five approaches
from Table 1 show that range-restriction corrections can be accessible to researchers in a wide
variety of primary and meta-analytic research settings. In the following sections, we present new
methods for correcting the most frequently encountered form of range restriction in organizational,
psychological, and educational research: indirect range restriction.

Correcting for Range Restriction

There are several equations available to correct for range restriction (see Sackett & Yang, 2000, for a
review), each of which is a special case of the multivariate selection theorem presented by Aitken
(1934) and Lawley (1943). Historically, most researchers have corrected correlations for range
restriction using univariate-correction formulas that assume that selection effects are fully explained
by only one of the variables involved in the correlation of interest. This assumption is commonly
violated when selection processes differentially impact the two variables, and these univariate
corrections are unnecessarily restrictive when range-restriction information is available for both
variables in a correlation. In this article, we consider the unique challenges of correcting for such
cases of bivariate indirect range restriction (BVIRR) that are not addressed by traditional psycho-
metric meta-analytic methods, and we develop new correction methods to obtain more accurate
parameter estimates in primary studies and meta-analyses. We use simulations and real-data illus-
trations to demonstrate the accuracy of our new methods and compare them to existing approaches.

A key task for range-restriction corrections is to accurately model the selection process(es) that
caused the observed sample variance to be unrepresentative of the population. The commonly
applied correction for univariate direct range restriction (UVDRR [Case II]; see Figure 1A for a
schematic representation)® assumes that selection occurs directly on one variable (X) involved in a
correlation (e.g., selecting job applicants based on extraversion scores directly restricts the variance
of extraversion and attenuates the extraversion—job satisfaction correlation; see Figure 1A) and
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Direct range restriction of
X (meets the assumptions of the
UVDRR/Case II correction)

Indirect range restriction of X and
¥ through the effect on X of selecting
on Z (meets the assumptions of the
UVIRR/Case IV correction)

¥ ]
X Y

Indirect range restriction of X and ¥ by
selection on Z, separate effects on X and ¥
(calls for use of the BVIRR/Case V
correction)

Figure |. Schematic representations of direct and indirect range-restriction mechanisms assumed by the (A)
UVDRR/Case Il correction, (B) UVIRR/Case IV correction, and (C) BVIRR/Case V correction. Note that the
BVIRR correction can be used in any of these three scenarios, provided that one has u ratios for both Xand Y. X
and Y are the manifest variables of interest in these scenarios and T and P are their respective latent construct
counterparts. Z is a potentially unobserved manifest variable that represents the applicant-suitability construct
S. The ey, ey, and ez variables are the measurement-error variances of X, Y, and Z, respectively. Explicit
selection on X causes direct range restriction in the X—Y relationship, whereas explicit selection on Z causes
indirect range restriction in the X—Y relationship. A variable in a dashed, shaded box indicates a selection
variable. Solid lines represent observed X-Y relationships. Dotted lines represent correlational relationships
among latent variables when paths have two arrowheads and causal effects of latent variables on manifest
variables when paths have one arrowhead. Heavy dashed lines show the paths through which explicit selection
performed on a manifest variable affects other variables, both latent and observed. Relationships between X and
Z,Yand Z, Xand S, Yand S, Zand T, and Z and P exist but are not shown because Z is presumed to be an
unknown or unmeasured variable that is not of substantive interest when one is studying the relationships
between X and Y and between T and P.

corrects the correlation using the u ratio for X (i.e., the ratio of SDx in the selected sample to SDy in
the target population).

Hunter et al. (2006) presented methods for the more common case of univariate indirect range
restriction (UVIRR [Case IV]) wherein selection occurs on a third variable, but the range restriction
of true-score variance for one of the variables involved in the correlation of interest fully accounts
for the effect of range restriction on the other variable (see Figure 1B). Hunter et al.’s UVIRR
correction is structurally very similar to the UVDRR correction, but it assumes that the effect of
selection on an unmeasured third variable (Z) on one observed variable (Y) in a correlation is fully
mediated by the other variable in the correlation (X) for which a u ratio is known (e.g., if selection
decisions are based on interview ratings that have no direct association with job satisfaction after
controlling for extraversion, correcting only for range restriction of extraversion will permit accurate
estimation of the extraversion—job satisfaction correlation; Figure 1B). Indirect range restriction is
transmitted through true-score correlations because error scores are assumed to be independent of
other variables. Both the UVDRR and UVIRR corrections assume that selection effects are fully
explained by only one of the variables in the target correlation. This assumption is commonly
violated when selection processes differentially impact the two variables involved in a correlation.
Violating UVIRR’s mediation assumption reduces the correction’s accuracy (e.g., if the interview
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ratings in our previous example have a relationship with job satisfaction that is not accounted for by
extraversion, the UVIRR correction will be less accurate); however, even in such cases, the UVIRR
correction is more accurate than the UVDRR correction (Beatty, Barratt, Berry, & Sackett, 2014; Le
& Schmidt, 2006).

Even more accurate corrections for range restriction can be made using methods that do not share
UVIRR’s mediation assumption. Such methods require that u ratios are available for both variables in
the target correlation. Alexander, Carson, Alliger, and Carr (1987) presented a correction for direct range
restriction on both variables in a correlation (i.e., bivariate direct range restriction; BVDRR). Schmidt
and Hunter (2015) reported that this correction performs reasonably well in meta-analyses even when
the selection process is indirect. Alexander (1990; based on earlier work by Bryant & Gokhale, 1972)
presented a similar correction for correlations that have been restricted via selection on a single
unknown third variable when u ratios are available for both variables in the correlation; we refer to
this correction as the bivariate indirect range restriction (BVIRR) correction. This correction is
potentially useful in a wide range of research and practice settings where range restriction affects
both variables in a correlation through an unknown selection mechanism. Le, Oh, Schmidt, and
Wooldridge (2016) combined Alexander’s (1990) formula with corrections for measurement error
and proposed methods for applying the BVIRR correction (which they called “Case V”’) in meta-
analysis. Le et al. proposed the use of conventional individual-correction and interactive artifact-
distribution psychometric meta-analysis procedures (see Chapters 3 and 4 of Schmidt & Hunter,
2015) with the BVIRR correction; however, Le et al.’s methods overlooked important effects of the
BVIRR correction on the sampling error of corrected correlations and the unique corresponding
implications of applying the BVIRR correction in primary research and meta-analyses. In this
article, we present a generalized form of the BVIRR correction and describe new methods to
accommodate its impacts on the sampling variance of correlations.

Correcting for Bivariate Indirect Range Restriction

When applying the BVIRR correction, one is interested in the target population-level correlation
between the constructs 7 and P, which are represented by the imperfectly measured variables X and
Y, respectively. While 7 and P are the constructs of interest, a third construct called S is also
important because it represents a “suitability” construct or a screening process through which
selection affects the variances of T and P (see Figure 1C). S need not be represented by a known
or measured variable (or set of variables)—its effects on X and Y can be inferred from the observed
variables’ u ratios without knowing the exact nature of the selection process (the only requirement is
that one must know the signs of S’s correlations with 7 and P). The key advantage of the BVIRR
correction over the UVIRR correction is that the BVIRR correction permits selection on S to have
separate direct effects on both 7 and P, rather than assuming the effect of selection on P is fully
mediated by 7 (cf. Figure 1B and Figure 1C).

Based on the selection path model shown in Figure 1C, a general form of the BVIRR correction
can be written as:*

Py tixuy + My/[1 — ug||1 —ud |

Prp, = 1
T v Pxx,Pry, M
with a corresponding attenuation formula written as:

Prp,\/Pxx, Pry, — M/|1 — ug ||l — uy|

Uxuy
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Table 2. Decision Rules for Using the BVIRR Correction and for Choosing Values of A.

Values of Correlations with Selection
u Ratios Mechanism $ Suggested Value of A or Other Course of Action
Both < 1 Ppsp, and psr, have same sign +1
Psp, and pgr. have different signs —1
Psp, Or Psr, equals 0 0
Both pgp, and pgr, equal 0 Range variation cannot be attributed to S; identify a different
selection mechanism
Both > 1 Psp, and pgr, have same sign -1
Psp, and pgr, have different signs +1
Psp, Or Psr, equals 0 0
Both pgp, and pgr, equal 0 Range variation cannot be attributed to S; identify a different

selection mechanism
One < 1and Regardless of other considerations, a multivariate correction is the best approach for dealing
one > 1 with this pattern of range variation. If a multivariate approach cannot be used, an
approximation may be reached by using the following general-case equation to estimate A:

sign(1—ux) min (ux &) +sign(1—uy)min (uy %)

min (vaﬁ) +min (uy %)

Psp, and pgr. are both nonzero  sign[pgr, pep, (1 — ux)(1 — uy)]

Psp, OF psr, equals 0 0
Both pgp, and pgr, equal 0 Range variation cannot be attributed to S; identify a different
selection mechanism

where prp_is the correlation between X and Y that has been fully corrected for measurement error
and range restriction, pyy. is the restricted-group (i.e., range-restricted or enhanced) correlation
between X and Y, pyy and pyy are unrestricted-group (i.e., target population) reliability values for
X and Y, respectively, uy and uy are observed-score u ratios (ratios of SD; to SDa)5 for X and 7Y,
respectively, and A is a coefficient that modulates the effect of the u ratios. If unrestricted-group
reliability values are unavailable, these can be estimated from restricted-group reliabilities using the
formula given by Schmidt and Hunter (2015, p. 127):

pxx, = 1 —uz (1 — pyy) 3)
and
Pyyr,=1— ”?](1 - pYY,») . (4)

In individual studies, the parameters given in Equations 1-4 are estimated using sample statistics
(e.g., 7y, in place of pyy.). In Equations 1 and 2, the value of A is determined based on the signs of the
correlations between S and T and between S and P and whether the variances of the X and Y variables
are restricted or enhanced. A summary of decision rules for the value of A is shown in Table 2. If
both X and Y are range restricted (i.e., u < 1), A equals +1 when pgp and pgr, (i.e., unrestricted
correlations of S with the constructs of interest) have the same sign and —1 when they have different
signs (Alexander, 1990; Le et al., 2016). If both X and Y are range enhanced (i.e., u > 1), the patterns
of A values are reversed: A equals —1 when pgp and pgy, have the same sign and +1 when they have
different signs.

In the case that one u ratio indicates range restriction and the other indicates range enhancement
(either due to complex/multiple selection mechanisms or simply due to sampling error in the
observed standard deviations),® a multivariate range-variation correction is most appropriate (Law-
ley, 1943). However, if insufficient information is available to perform such a correction, an
approximate correction can be made using the BVIRR correction with A determined by the relative
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magnitudes of range restriction and range enhancement for X and Y, as well as the patterns of pgy.
and pgp, correlations:’

sign(1 — uy) min(ux,i) + sign(1 — uY)min(uY,$>
min(ux,i) + min(“)ﬂi)

The result of Equation 5 ranges from —1 to +1 and reflects a compromise between the opposing
effects of range restriction and range enhancement, tilted toward the effect with the stronger impact
on the correlation. In the case that both variables are affected by the same type of range variation,
Equation 5 reduces to + 1 as described above.

A final difference between Equation 1 and previously presented BVIRR correction formulas (cf.
Alexander, 1990; Le et al., 2016) is the absolute value brackets under the radical in the numerator.
These ensure that the value under the radical is positive when a mixed pattern of range restriction
and range enhancement is observed for X and Y. Any negative signs under the radical that are lost
due to the use of absolute values are accounted for in Equation 5.

A = sign[pgr, psp, (1 — ux) (1 — uy)] (5)

Sampling Error and Bivariate Indirect Range-Restriction Corrections

The sampling variance of the observed correlation coefficient is used to compute confidence inter-
vals and significance tests in primary research, as well as to estimate study weights and the sampling
error variance of effect sizes in meta-analysis. The sampling distribution of a nonzero Pearson
correlation is asymmetric, but its overall variance can be approximated as:

(1- PXY,2)2
TNt )

vare, —
where pyy, is the population correlation (typically estimated in meta-analysis by the sample size-
weighted mean observed correlation) and N is the sample size of an individual study (Schmidt &
Hunter, 2015, p. 101). When psychometric corrections are applied to a correlation, the sampling error
variance must also be adjusted to accurately reflect the amount of sampling error associated with the
corrected correlation. It is commonly stated that sampling error variance for the corrected correlation
(var,,) is always larger than for the observed correlation (e.g., “corrections incur a cost”; Oswald &
McCloy, 2003, p. 317). Indeed, the correction equations for measurement error and univariate range
restriction (i.e., UVDRR and UVIRR) do imply that the corrections increase sampling error.® How-
ever, the BVIRR equation implies that the sampling variances of correlations corrected for range
restriction can be smaller than the sampling variances of observed correlations. Below, we describe the
equation-implied corrected sampling variance, discuss why this is not the most appropriate sampling
variance estimator for corrected correlations, and provide a new approach for estimating corrected
sampling variances, which we evaluate via a meta-analysis simulation.

Equation-Implied Sampling Variance Estimator for BVIRR
The BVIRR correction is a linear transformation in slope-intercept form. It includes a multiplicative term:

UxlUy

v/ Pxx, Pry,

Pxy,

and an additive term:
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M1 = uz||1 - ug|
v/Pxx,Pry, .

The additive component of a linear transformation only impacts a variable’s mean, not its variance.
Accordingly, only the multiplicative term in Equation 1 affects the sampling error variance of the
corrected correlation. Multiplying a variable by a scalar (i.e., the value uyuy/ /Pxx, Pyy, in this case)
transforms its variance by the squared value of that scalar. Thus, the BVIRR equation-implied
variance for the corrected correlation is:

+

var,, = vare VZ7 (7)
where

p (8)

v Pxx,Pyy, ’

The equation-implied effect of the BVIRR correction on sampling variance is that, under con-
ditions of range restriction and high-quality measurement, corrected correlations have smaller
sampling variances than observed correlations because range-restricted u ratios are smaller than
1. This implication is quite strange, as corrections for range-restriction should theoretically increase
sampling variances because the correction introduces additional uncertainty into the effect-size
estimation process. We consider these additional sources of error momentarily.

We note that Equation 7 differs from previously proposed sampling variance formulas for
BVIRR-corrected correlations. Le et al. (2016, p. 983) proposed a var,, formula analogous to those
for other psychometric corrections:

var, =5, 9)

where A is the compound attenuation factor that quantifies the combined impact of range restriction
and measurement error on the correlation:

a=Pxri (10)
P1Pa

Equation 9 assumes that the BVIRR correction affects sampling variances in the same way as
corrections for measurement error, UVDRR, and UVIRR. The pyp, value in Equation 10 includes
the BVIRR correction’s additive term and is thus a mathematically inappropriate compound attenua-
tion factor, as the additive term does not have a direct impact on variance. The problem with the
attenuation factor in Equation 9 is that it cannot account for the effect of the correction on the
sampling distribution of a correlation, particularly when the sampling distribution of the observed
correlation distribution spans zero by a non-trivial margin.

There is a nonlinear association between observed correlations and the squared compound
attenuation factors used in Equation 9 and, as shown in Figure 2, this nonlinearity becomes most
pronounced when the sign of the observed correlation differs from the sign of the unrestricted true-
score correlation. The parabolic shape of the associations in Figure 2 means that observed correla-
tions with the same absolute value but different signs will have the same squared compound
attenuation factor if they correspond to corrected correlations with the same absolute value. For
example, observed correlations of —.10 and +.10 that both have corrected values of .20 will have
squared compound attenuation factors equal to .25 even though one of the observations incurs a
much larger correction than the other. This incorrectly implies that the magnitude of a correction
does not directly correspond to the effect of the correction on the estimated sampling error of the
corrected value or to the weight assigned to the corrected value in an individual-correction
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Figure 2. Association between observed correlation values and squared conventional compound attenuation
factors (AZ; Le, Oh, Schmidt, & Wooldridge, 2016) for unrestricted true-score correlations ranging from .10
to .50.

meta-analysis. As a result, corrected correlations that have a different sign than their observed values
will get too much weight in a meta-analysis, biasing both the mean p and SD,, estimates. This bias
will be most pronounced in settings where the mean correlation is closer to zero, the distribution of
correlations is more variable, and the mean sample size is smaller (i.e., there is more sampling error):
Each of these conditions increases the probability that observed correlations will have different signs
than their corresponding corrected correlations. Given that applying corrections contributes new
sources of uncertainty to a statistical estimate, the quadratic trends in Figure 2 offer an implausible
description of the effects of the BVIRR correction on the precision of corrected estimates. The
nonlinearity shown in Figure 2 also affects the compound attenuation factors of other corrections
(e.g., UVDRR, UVIRR, measurement error), but the attenuation factors are reasonable approxima-
tions for those corrections because those corrections are not able to alter the sign of an effect size.
Apart from the issues caused by the parabolic association between observed correlations and
squared compound attenuation factors, another problem with the traditional usage of compound
attenuation factors is that they fail to account for how the sampling error of artifacts impacts the
uncertainty of corrected correlations. Neither Equation 7 nor Equation 9 accounts for sampling error
in the artifacts used to make corrections, which is particularly problematic for BVIRR because of the
correction’s additive term. In the following section, we describe how to obtain a more accurate
estimate of the corrected sampling variance that accounts for uncertainty in the artifact values.

A More Accurate Sampling Variance Estimator for BVIRR

A full account of the effects of the BVIRR correction on correlations’ sampling variances must
include the sampling error of the artifacts used to make the corrections. This is because observed
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artifact values are statistics, not parameters, and are thus estimated with error (cf. Raju, Burke,
Normand, & Langlois, 1991). We used the delta method to estimate the sampling variance of
BVIRR-corrected correlations, incorporating sampling error in reliability coefficients and u values.
The delta method is a widely used technique for approximating the variances of linear and nonlinear
functions of multiple variables (Jones & Waller, 2013; Oehlert, 1992). The delta method essentially
finds a linear regression function (called a “Taylor Series approximation;” for an introduction, see
Stein & Barcellos, 1992, p. 624) that closely resembles the actual function. This linear function is
then used to represent the variance of the function as a weighted sum of the input variables’
variances (e.g., the sampling error variances of the observed correlation, the reliability coefficients,
and the u ratios). A Taylor series approximation (TSA) of a function’s variance is like linear
regression, but instead of computing the regression weights from data, the regression weights are
computed using the partial derivatives of the function, differentiating by each input variable. The
partial derivatives of a function are simply regression weights that describe how each input is
linearly related to the function’s output, with the other inputs held constant. Just as regression
weights can be used to compute the variance of fitted criterion values from the variance-
covariance matrix of predictor variables, the partial derivatives of a function can be used to estimate
the variance of the function’s outputs by computing a linear combination of the inputs’ variances.

Our TSA formula for the sampling variance of a corrected correlation relies on principles of error
propagation (Meyer, 1975), used widely in the physical sciences to estimate error in complex
measurements, to estimate the combined effects of uncertainty in artifacts and the observed correla-
tion on the total uncertainty in the corrected correlation. Details of this procedure are given in Online
Appendices C and D. The TSA formula for the sampling error of a BVIRR-corrected correlation is:

var,, = SEﬁm ~ BISE; + B3SE,, + B3SE. + BiSE. + B§SE§XY1, (11)
where SE is a standard error and B, B,, B3, B4, and Ps are first-order partial derivatives of Equation 1
with respect to qyx,, qv,, ux, uy, and pyy,, respectively. The gy, and gy, terms represent measure
quality indices, which are the square roots of the pyy and pyy, reliability coefficients, respectively,
and are interpretable as correlations between true scores and observed scores. By using the squared
values of these partial derivatives as weights in a linear combination of sampling-variance estimates,
one can more completely account for the sampling error in corrected correlations than is possible
with Equations 7 or 9.

We note that Equation 11 assumes that each source of variance is independent, even though
they are likely to be correlated to some degree in reality. There are currently no accurate estima-
tors of how the sampling distributions of u ratios, reliabilities, and correlations relate to each other,
particularly given the many methods to compute reliability estimates and the variability in whether
u ratios are computed using unrestricted standard deviations from the local context (Approach 1)
or an external study (e.g., norms from test manuals; Approaches 2-5). We attempted to derive
stable estimators of the correlations among the sampling distributions of correlations, reliability
indices, and u-ratios via the delta method and the method of moments for products; we found that
these estimates were inconsistent in their accuracy due to the difficulty of accurately defining
correlations among variables that have been exponentiated (e.g., using square roots, squared
terms, or inversions). Fortunately, as demonstrated in our later simulation, we have found that
Equation 11, even with its independence assumptions, functions rather well in practice; however,
we nonetheless encourage future researchers to derive stable, accurate estimators of the covar-
iances among artifacts’ sampling distributions.
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Correcting for Bivariate Indirect Range Restriction in Individual-
Correction Meta-Analysis

The more accurate estimate of BVIRR-corrected correlations’ sampling variances provided by
Equation 11 has implications for individual-correction meta-analyses. Existing procedures for
meta-analyses using bivariate range-restriction corrections have ignored artifact sampling error
(e.g., Le et al., 2016; Schmidt & Hunter, 2015). Le et al. (2016) outlined a procedure for using the
BVIRR correction in individual-correction meta-analyses that parallels procedures for other psycho-
metric corrections. In their procedure, correlations are individually corrected for BVIRR and then
meta-analyzed using study weights based on sample sizes and compound attenuation factors (see our
Equation 10 for the attenuation factors):

Wy = Nd? (12)

Study weights in psychometric meta-analysis are intended to reflect the inverse of an effect
size’s sampling variance (using the mean effect size to estimate the population parameter; Schmidt
& Hunter, 2015). As discussed earlier, the BVIRR compound attenuation factor is not directly
related to the corrected correlation’s sampling variance, so it is unlikely that the weights in
Equation 12 would be optimal for individual-correction meta-analyses incorporating BVIRR.
More accurate study weights might be based on the equation-implied BVIRR-corrected sampling
variance (see Equation 7):

N;
Wi =—3, (13)
Vi

where dividing the sample size by the squared V coefficient produces a weight analogous to the
inverse equation-implied corrected sampling variance. Even more accurate weights may be com-
puted as a function of a pseudo-compound attenuation factor defined by the ratio of the error
variance of the observed correlation to the TSA-based error variance of the corrected correlation
that incorporates the TSA estimate of sampling error variance in the artifacts:

var,,

=N, : 14
Wi erecj (14)

where vare,, is estimated using Equation 11. In Equation 14, we use the pseudo-compound attenua-
tion factor to determine weights rather than simply taking the inverse of the corrected error variance
(e, w=1/ vareq) so that the weights will be compatible with the individual-correction weights
computed for correlations corrected using other types of artifact corrections (e.g., corrections for
UVIRR, UVDRR, or measurement error alone); this approach will allow different corrections to co-
occur within the same meta-analysis (e.g., if some correlations are corrected for BVIRR while others
are corrected for UVDRR or UVIRR). Given that they account for sampling error in the artifact
estimates, we expect that the TSA-based weights in Equation 14 will be superior for estimating the
average corrected sampling variance in a meta-analysis and thus provide more accurate SD,, esti-
mates. It is not immediately clear whether the weights in Equation 13 or Equation 14 will provide
more accurate estimates of the mean corrected correlation. The question of which type of weight is
best is an empirical one, so we will compare the efficacy of these competing weights in a meta-
analysis simulation after describing how BVIRR can be implemented using artifact distributions.
For the remainder of the article, we refer to using the weights from Equation 12 and the sampling
variance estimates from Equation 9 as the IC, method, we refer to using the weights from Equation
13 and the sampling variance estimates from Equation 7 as the ICy, method, and we refer to using the
weights from Equation 14 and the sampling variance estimates from Equation 11 as the as the ICtgp
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method. In all cases, the individually corrected mean correlation is estimated as:
Prp, = o (15)

where k is the number of studies. The observed standard deviation of individually corrected mean
correlations is computed as,

Zlf: W‘(I”Tpa_ —5 )2
D _ g=1 "] 1y TP, 7 (16)

I'rPq k
Zj:l Wi

and the residual SD,, from an individual-correction meta-analysis is estimated as,

— S wyvare,
SD, =, spr — ==L (17)

PP 7 k
’ " Zj:l Wi

Note that if the residual variance term under the radical is negative, S/ﬁpm is set to zero.

Correcting for Bivariate Indirect Range Restriction
in Artifact-Distribution Meta-Analysis

Just as artifact sampling error is important when correlations are corrected individually for BVIRR,
accounting for artifact sampling error can also improve estimates in artifact-distribution meta-
analyses. Reliability coefficients and u ratios are statistics, not parameters, which means that the
variance of an artifact distribution used in a meta-analysis is a function of both the true variance of
the artifacts as well as the sampling variance of the artifacts. Using observed artifact distributions in
meta-analyses overestimates artifact variance and underestimates SD, because the sampling error of
the artifacts artificially inflates estimates of the amount of variance in correlations that is attributable
to measurement error and range restriction. Failure to account for the sampling error in artifact
distributions is particularly noticeable for BVIRR corrections compared to other psychometric
corrections because the BVIRR correction includes an additive term that is entirely determined
by artifact values. Interactive method BVIRR meta-analyses (as presented by Le et al., 2016)
subtract the Ay/|1 — u%||1 — u%| term from the mean corrected correlation (using the attenuation
formula in Equation 2) when estimating the variance attributable to psychometric artifacts, allowing
the error variance of artifacts, especially u ratios, to have an exaggerated effect on estimates of SD,,.

In a simulation study of their interactive method artifact-distribution BVIRR meta-analysis
procedure, Le et al. (2016) noted that the method underestimated SD,,. They attributed this negative
bias to correlations among artifacts (p. 987) and recommended dividing the variance attributable to
artifacts by 2 before subtracting this term from the variance of observed correlations to estimate SD,,.
While the artifacts may certainly covary, the negative bias more likely stems from artifacts’ sam-
pling error variances. Dividing the variance in correlations attributable to artifacts in half may yield
a better estimate of artifactual variance in some cases, but it is inadequate as a general method for
estimating SD,, because it does not account for the fact that artifacts’ sampling variances are
correlated with the sample sizes of the studies from which the artifacts were obtained. Halving the
estimate of artifact-induced variance will only work in certain circumstances; in other cases, it will
underestimate artifactual variance when meta-analyses have large average sample sizes and it will
overestimate artifactual variance when meta-analyses have small average sample sizes. We there-
fore developed solutions using alternative SD,, estimators.
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A Taylor Series Approximation Estimator for SD,, in BVIRR Artifact-Distribution
Meta-Analyses

We address the impact of artifact sampling error on BVIRR SD,, estimates by introducing a new
method to estimate SD,, using a Taylor series approximation (TSA). Our TSA method relies on a
linear approximation of the effects of correlations’ sampling error variances and the variances of
artifacts on observed correlations to estimate SD,. TSA procedures have been found to be highly
accurate for meta-analyses involving other range-restriction corrections (e.g., Le & Schmidt, 2006;
Raju & Burke, 1983). For example, Le and Schmidt (2006) evaluated the accuracy of Hunter et al.’s
(2006) TSA procedure for the UVIRR (Case IV) correction and showed that the TSA procedure
generally produced accurate results. We have found via simulation that TSA methods converge well
with the results of interactive methods, but are more intuitive, less computationally intensive, and
allow researchers to incorporate artifact information from more types of sources by virtue of only
requiring the mean and variance of each artifact distribution.

The TSA BVIRR method for estimating SD,, involves computing a weighted linear combination
of the variances of the u ratios and the measure quality indices for X and Y to estimate the amount of
variance in distributions of observed correlations that is predictable from artifacts. This predicted
artifact variance and the predicted sampling error variance are subtracted from the observed variance
of correlations; the remaining residual variance can then be corrected for measurement error and
range restriction to estimate the variance of the corrected correlations:

— N 2 2 2 2 2
vary, =~ [varmi —var, — (blvarqxa + byvar,, + bivar,, + b4varuy)}/b5 (18)

In Equation 18, vary, is the sample size-weighted variance of observed correlations, var, is the
predicted sampling error variance of observed correlations computed using Equation 6 with the
sample size-weighted mean observed correlation and the mean sample size, and vary, , var,, ,
vary,, and var,, are the sample size-weighted variances of the distributions of gx,, qv,, tx, and uy
sample values, respectively. The by, b,, b3, by, and bs terms are the first-order partial derivatives of
Equation 2 with respect to gyx,, qvy,, tx, uy and prp , respectively. The portion of Equation 18 in
square brackets represents the residual variance (var,.,) of observed correlations after accounting
for variance attributable to sampling error and artifacts; dividing this value by b2 converts it to the
true-score metric using the mean values of all artifacts. Full details of this TSA procedure are
given in Online Appendix E. Both this TSA method and Le et al.’s (2016) interactive method
assume that gy, (i.e., \/Pxx,)s qv, (i-€., \/Pyy,)> tx, Uy, and pyp, are all independent. We refer to the
practice of computing TSA artifact-distribution meta-analyses using observed artifact variances as
the ADtgs method.

Equation 18 can be modified to account for the negative-biasing effects of artifact sampling error
on SD,, estimates. To achieve this, one must first conduct a bare-bones meta-analysis of each artifact
and calculate the expected variance in the artifact due to sampling error (SE%). This sampling error
variance is then subtracted from the observed artifact variance to estimate the true (nonsampling)
random-effects artifact variance (sampling error variance estimators for each artifact are given in
Online Appendix C). For example, for uy:

var',, ~var,, — SEf,X, (19)
where var,, is the observed variance of uy, SE%X is the predicted sampling error variance of uy
(computed via a bare-bones meta-analysis of uy), and var’,,, is the estimated true (i.e., residualized)

random-effects variance of uy. One can then substitute these residualized artifact variance estimates
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into Equation 18 to yield:
var,, ~ {varm[ —var, — (bjvar'y, + byvar'y, + bjvar',, + bivar/uy)}/bg . (20)

By estimating and removing artifacts’ sampling variances from the observed artifact variances, this
residualized TSA estimator gives a better estimate of the true amount of artifactual variance than is
possible using either the interactive method (Le et al., 2016) or the unadjusted TSA method (Equa-
tion 18). We refer to the practice of computing TSA artifact-distribution meta-analyses using
residualized artifact variances as the ADtga_res method.

An Interactive Artifact-Distribution Estimator for SD , Using Shrunken Artifact Distributions

Just as Equation 20 uses residualized artifact variances to estimate SD,, in a Taylor series approx-
imation artifact-distribution meta-analysis, it is possible to use true-score estimation techniques
from classical test theory to remove the influence of error variance from distributions of artifact
values. The classical test theory formula to estimate true scores is:
)(true/ = yObS + (XObS - )_(ObS) M7 (21)
vary,,.

where X, is a vector of observed scores, X, represents estimated errors of measurement, X,/ is
a vector of estimated true scores, and the ratio in which vary, — vary, . is divided by vary,, is the
definition of a reliability coefficient. Regressing (i.e., “shrinking”) the X, — X5, deviation scores
toward zero using the measure quality index (i.e., the square root of the reliability coefficient) of the
distribution as a regression weight reduces the variance of the distribution to reflect the amount of
systematic (i.e., “true”) variance in the distribution. Adding back the observed mean to the shrunken
deviation scores yields a usable vector of estimated true scores. This linear transformation rescales
the variance to account for the effects of error on observed scores, but it does not change the rank
order of scores, nor does it change the overall shape of the distribution.

One can use the logic of the true-score estimation formula in Equation 21 to compute new artifact
distributions consisting of artifact values that have been shrunken toward the mean. Once again
using the uy distribution as an example, a shrunken artifact distribution can be computed as:

var,, — SE?

u'y =ity + (uy — iy =, (22)

vary,
where uy is a vector of observed u ratios, var,, is the variance of observed u ratios, SE,, is the
standard error of the u-ratio distribution, and #x is a vector of shrunken values. After computing a
shrunken distribution for each type of artifact, the new artifact distributions can be used in an
interactive meta-analysis in the same way that one would use observed artifact distributions. We
refer to Le et al.’s (2016) original practice of computing interactive artifact-distribution meta-
analyses using vectors of observed artifacts values as the ADy,; method. We refer to the practice
of computing interactive artifact-distribution meta-analyses using shrunken (residualized) vectors of
artifact values as the ADyy s method.

Accuracy of Bivariate Indirect Range Restriction Correction Methods
in Meta-Analysis
Having demonstrated the mathematical considerations involved in estimating sampling variances,

artifact variances, and study weights when the BVIRR correction is used in meta-analysis, we now
present a series of simulations to evaluate the relative accuracy of several BVIRR meta-analytic
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Table 3. Parameter Values and Distributions Used in the Simulation

Parameter Values/Distribution

k 10, 20, 50, 100

N Gamma distribution with shape = .64 and scale = 165
P, 1,35

SDy,, .00, .05, .10, 15, .20

Psp, and Py, 4

SD,, and SD,, 2

Pxx, and Pyy, 8

SD,,,, and SD,,, .05

A (p=.028), .2 (p = .066), 3 (p = .124), 4 (p = 180), .5 (p = .204), .6 (p = .180),
7 (p=.124), 8 (p = .066), .9 (p = .028)

Note: N = sample size after selection; Py, = mean unrestricted true-score correlation between X and Y; pg = mean
unrestricted true-score correlation between selection variable and Y; p¢r = mean unrestricted true-score correlation
between selection variable and X; pxx, = mean reliability of X; pyy, = mean reliability of Y; SD,,, = standard deviation
of unrestricted true-score correlations between Xand Y; SD,,, = standard deviation of unrestricted true-score correlations
between selection variable and Y; SD, = standard deviation of unrestricted true-score correlations between selection
variable and X; SD, = standard deviation of the reliability of X; SD,, = standard deviation of the reliability of Y; SR =
selection ratio applied to the selection variable; p = weight determining the likelihood of a given SR being drawn from a
random distribution. Sample sizes were sampled from the indicated gamma distribution with the constraint that sample sizes
had to be at least 30 to be used so as to exclude studies smaller than those that typically appear in the published literature.
The correlation parameters used to simulate a given sample were drawn from normal distributions with the constraint that
they had to be valid correlations and form a positive definite correlation matrix. The reliability parameters used to simulate a
given sample were drawn from beta distributions with the desired mean and standard deviation.

methods. We compare the accuracy of the three sets of study weights introduced earlier (see
Equations 12, 13, and 14) in individual-correction meta-analyses. These simulations represent the
first evaluation of the accuracy of BVIRR individual-correction methods (cf. Le et al., 2016, who
only evaluated the accuracy of their interactive artifact-distribution procedure). We also compare the
accuracy of the new TSA estimators against the interactive method estimators for SD,, in artifact-
distribution meta-analysis. Based on the results of these simulations, we consider whether each
estimator produces reasonable estimates and offer recommendations for future meta-analyses apply-
ing BVIRR corrections.

Method

We used simulation parameters that resemble the types of correlations, reliabilities, and sample sizes
commonly observed in organizational and psychological literatures. We designed our simulations to
introduce sampling error in correlations as well as artifacts to produce a high-fidelity representation
of real primary studies. We used the simulate_r_database function in the psychmeta R
package (Dahlke & Wiernik, 2017/2019) to generate all of our simulated samples with sampling
error affecting all correlations and artifact estimates. Below, we give an overview of the simulation’s
parameters and procedures.

Distributions of Correlation Parameters

We used a variety of mean and SD parameters to define the correlations among P, 7, and S (see
Table 3). The parameter distributions of correlations between T" and P used in this simulation
represent both fixed-effect and random-effects scenarios, with the mean correlations ranging from
.10 to .50 and SD,, values ranging from .00 to .20. We chose to use a mean correlation of .40 for the
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relationships between S and P and between S and T because this is a commonly observed magnitude
of true-score correlation and creates a scenario in which selection on S could meaningfully impact
the correlation between 7' and P. Preliminary simulations in which we varied both the mean and
variance of the correlations involving S produced little variation in outcomes, so for the present
study we only simulated conditions in which pgr. and pgp had means of .40 and standard deviations
of .20 because this represented a challenging set of circumstances for the meta-analytic methods to
overcome. Greater average range restriction from selecting on S (a function of the mean correla-
tions with S) and greater variability in the impact of selecting on S (a function of the SD of
correlations with S) creates more variable artifact distributions and less consistent effects of
artifacts across studies.

Distributions of Artifact Parameters

The constructs of interest, 7'and P, are measured with error, so reliability parameters were randomly
drawn from the distribution described in Table 3 to attenuate the correlations involving 7 and P prior
to generating data and inducing range restriction. We note that Le et al. defined separate parameter
distributions for pyy and pyy , such that the pyy distribution included the low levels of reliability
typically observed for job performance criteria. However, we chose to use the same reliability
distribution parameters for ¥ as for X so as to model potential applications of BVIRR in meta-
analyses in areas of organizational research other than personnel selection. To induce indirect range
restriction in the relationship between X and Y, we used selection ratios (proportion of the applicant
sample selected) ranging from .10 to .90 to perform selection on a suitability construct S. Although
selection is always performed on measured variables in practice, our choice to select on a construct
does not harm the fidelity of our simulation, as selecting on a measured variable can only affect the
variance of other variables through selection’s effects on true scores (see Figure 1C) and the
reliability of S therefore has little effect on the extent of range restriction in X and Y.

Sample Sizes of Primary Studies (N)

Sample sizes (V) need to be defined to model the statistical artifact of sampling error. We sampled N
from a gamma distribution (shape = .64 and scale = 165), which produces a skewed distribution of
sample sizes similar to the distributions commonly observed in published meta-analyses (the mean
sample size using this distribution was 155). In generating random sample sizes, we only retained
sample sizes of 30 or larger so that our simulated samples would be similar to those encountered in
many domains of organizational and psychological research. Our distribution of sample sizes
reflects the number of cases after selection, so we had to simulate N, = N/ SR cases in each sample
(where SR is a selection ratio indicating the proportion of applicants selected) to ensure that there
would be N cases left over after performing selection.

Number of Studies in Meta-Analyses (k)

We computed meta-analyses with 10, 20, 50, and 100 studies. These second-order sample sizes span
a range of ks commonly encountered in organizational research, although meta-analyses with more
than 100 studies are not uncommon. These ks allowed us to examine the asymptotic accuracy of
BVIRR as a function of the size of the meta-analysis in which it was used.

Proportion of Studies Providing Artifacts

For artifact-distribution meta-analyses, we manipulated whether 20% or 50% of studies provided
artifact information by randomly deleting artifact information from our simulated databases. When
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artifact deletion is used to create missingness in a random fashion, it makes no difference whether
the artifacts are deleted at the level of the study or the individual artifact observation (Le et al.,
2016). We chose to delete all artifacts associated with randomly selected studies.

Simulation Procedure

The combinations of parameters described above resulted ina 3 (pzp,) X 5 (SD,,,, ) X 4 (k) design
for our simulation (plus a 2-level missingness manipulation for artifact-distribution methods). For
each of the 60 possible combinations of the pyp , SDy,, , and k parameters, we simulated meta-
analytic databases from sets of parameter values that were randomly drawn from the parameter
distributions associated the simulation condition; all other parameters were randomly selected from
the same distributions across all conditions. In each simulated primary study, a 3 x 3 correlation
matrix containing prp , Psp,, and pgr, was constructed, a random multivariate data set was generated
from the population matrix with measurement error affecting the 7" and P constructs, and selection
was performed on the S construct using a randomly chosen selection ratio. The observed ryy,
correlation and the range-restricted reliabilities and standard deviations of X and Y were then
computed. The range-restricted standard deviations served as u ratios, as the population standard
deviation toward which all studies were corrected was unity. We used a consistent referent standard
deviation to define u ratios because it is a common practice for meta-analysts to correct observed
correlations toward a standard deviation reported in a test manual or in a large-scale, representative
study (Approaches 2-5; cf. Ones & Viswesvaran, 2003; Sackett & Ostgaard, 1994).

For each of our conditions, we meta-analyzed 1,000 sets of simulated studies. For each random
sample of studies, we computed meta-analyses using seven methods: IC,, ICy, ICtga, ADTsA,
AD1sA_ress ADmyg, and ADpy res. All comparative results were computed by analyzing exactly the
same data with competing meta-analytic methods. We computed the mean and standard deviation
(i.e., standard error) of all p;p, and SD,, , estimates across conditions and plotted these means and
standard errors for intuitive presentation of results. For the sake of parsimony, we present results for
meta-analyses with & of 10 and 50 and with SD,, , parameters of 0, .1, and .2. Tables of numeric
results from all simulation conditions are available in Online Appendix F and a full set of figures
showing results from all simulation conditions is available in Online Appendix G.

Results
Mean p Estimates

Simulation results for mean p estimates are shown in Figure 3. The first notable trend in the
estimates of mean correlations is that the conventional method for computing individual-
correction meta-analyses (IC,) using the N-4* weights recommended by Le et al. (2016) does a
very poor job of identifying the correct mean parameter value with the BVIRR correction. The IC,
method gave the most dramatic underestimates of the mean correlation when the true mean correla-
tion was small (e.g., .10) and, although it performed better with larger correlations, the IC, method’s
mean correlation estimates were also less accurate when the true variance of correlation parameters
was large (e.g., SD,, = .20). Interestingly, the IC, method performed worse when more studies were
included in a meta-analysis, which indicates that it is an inconsistent estimator.

All the other meta-analytic methods performed quite well in estimating the true mean correlation.
The TSA method of determining corrected sampling errors and study weights in individual-correction
meta-analyses (ICtsa) yielded slightly more variable (i.e., less consistent) estimates of the mean
correlation than the equation-implied method based on the V coefficient (ICy). The difference in
accuracy and consistency between the ICrg, and ICy, methods was small enough that neither is clearly
superior to the other; we will therefore base our recommendations about which method to use on the
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accuracy of their SD,, estimates. The artifact-distribution methods did quite well at recovering the
mean correlation, even when only 20% of artifacts were available. The interactive and TSA artifact-
distribution methods both used mean artifact values to estimate mean corrected correlations, so only
the TSA-based artifact-distribution mean p estimates are displayed in Figure 3.

SD,, Estimates

Figure 4 and Figure 5 depict the accuracy of SD,, estimates from competing meta-analytic methods
for second-order sample sizes of 10 and 50 studies, respectively. The first clear trend from these
results is that the IC, method was quite inaccurate at estimating SD,,. As the true SD,, increased, a
linear association between the true mean p and the estimated SD,, emerged, indicating that the IC,
method has a strong and systematic bias. This bias, combined with the IC, method’s bias for
estimating mean p and its weak mathematical foundation, is such that we cannot under any circum-
stance advocate using this method. The other individual-correction methods were more accurate at
estimating SD,, than the IC, method, but not without their own weaker biases. The ICy method
showed a stronger positive bias than the ICtgs method across all second-order sample sizes. Con-
sidering the superior accuracy of the ICrg, method for estimating SD,,, we recommend this method
over the other individual-correction methods.

In terms of artifact-distribution methods, we found that the interactive method using observed
artifact distributions (ADy,) and the TSA method using observed artifact variances (ADtga) pro-
duced SD,, estimates with distinct negative biases, while the TSA method using residualized artifact
variances (ADtsa_res) and the interactive method using shrunken artifact distributions (ADjpyt res)
produced SD,, estimates that were generally quite accurate. The biases of the ADy,; and ADrga
methods were larger when the SD,, parameter was smaller because artifactual variance represented a
larger proportion of the total variance in these conditions; these methods do not account for the
sampling error of artifacts and therefore misidentify that error variance as contributing to genuine
artifactual variance in the distribution of correlations. By accounting for the predicted sampling error
in distributions of  ratios and measure quality indices, the ADtga_res and ADyy s methods more
accurately estimated the SD,, parameter and reduced the disproportionate influence of artifact dis-
tributions on SD,, estimates when true parameter variance was small.

Considering the excellent performance of the ADtga_res and ADpy s methods with incomplete
artifact information, we applied the ADtga s method using complete artifact information and
compared the results of those analyses against the results obtained with the ICrgs method. Our
summaries of the mean p and SD,, results plotted in Figure 6 reveal that the ADga_rs method was,
in fact, more accurate than the ICyg4 method for estimating both parameters.

Discussion

We designed a simulation to evaluate the accuracy with which several methods for applying the
BVIRR correction in meta-analyses recovered correlations’ mean and standard deviation para-
meters. We found that the conventional IC, method was ill-equipped to accurately estimate the
means or standard deviations of the true parameter distributions. Our simulated meta-analyses of
varying second-order sample sizes showed that the IC, method performed worse at estimating mean
p and SD,, in larger-k meta-analyses than in smaller-k meta-analyses. This asymptotic inaccuracy
indicates that the IC, method is not a consistent statistical estimator. Both of our newly proposed
individual-correction methods proved superior to the IC, method when applied with the BVIRR
correction, but of these two we found that the ICtgn method was more balanced at accurately
estimating both the mean and the SD of the parameter distribution. The ICtg, method accounts for
the sampling error of artifact values, thereby providing a more complete estimate of the uncertainty
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Figure 6. Mean p and SD,, estimates for ICrsa (individual-correction method using Taylor series approxima-
tion to estimate corrected error variances and weights) and ADsa_res (Taylor series approximation artifact
distribution method using artifact variances residualized to remove the influence of predicted sampling error;
using 100% of artifact information) methods by number of studies meta-analyzed.
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in the corrected correlations and enabling more appropriate weights to be assigned to corrected
correlations.

In analyses using the IC, method, we found patterns of bias that were wildly inconsistent across
mean p, SD,, and k parameters, as well as across meta-analyses with different mean sample sizes.
The other individual-correction methods were reliable estimators of the mean correlation, and the
artifact distribution methods performed the most consistently of all of the methods when estimating
mean p. The IC, method demonstrated patterns of results that are consistent with the issues raised
earlier regarding the trends depicted in Figure 2 and support our assertion that the method’s poor
statistical foundations make it inadequate for operational use.

With regard to artifact-distribution methods, we found that sampling error in statistical artifacts
caused negatively biased estimates of SD,, with the ADy,; and ADts5 methods, which both rely
solely on observed artifact distributions. Removing sampling variance from artifact distributions
before using them to estimate SD, in the ADyga_res and ADypy¢ s methods provided the most
accurate artifact-distribution estimates of SD,,. In fact, the SD,, estimates from these methods were
even more accurate than the estimates produced by any of the individual-correction meta-analysis
estimators. We compared the ADrgp s method (using 100% of artifact information) to the ICtgx
method and found that applying the ADtga s method was more accurate than making individual
corrections (see Figure 6). Given the accuracy of the ADtga s artifact-distribution methods at
estimating both mean p and SD,, and the fact that even our best individual-correction method for
estimating SD,, exhibited varying degrees of bias across different mean p parameters, we recom-
mend using the ADtga es method even when artifact information is available from all studies.
Even though the ADtga es and ADpy s methods performed similarly in our simulations, we
prefer to recommend the ADtga s method because it is more computationally efficient. In
addition, the ADrga s method requires only artifact means and variances (rather than vectors
of individual artifact estimates), allowing greater flexibility when applying the BVIRR correction
because researchers can combine observed artifact distributions with the descriptive statistics of
artifact distributions from relevant populations reported in previous meta-analyses.

Application of the BVIRR Correction to Expatriate Adjustment
Meta-Analyses

The above simulation illustrated that our new BVIRR methods are more accurate than com-
peting methods. To demonstrate how the BVIRR correction can be useful in analyses of real
effect sizes, we reanalyzed meta-analyses of relationships between Big Five personality traits
and expatriate adjustment reported by Harari, Reaves, Beane, Laginess, and Viswesvaran
(2018). We chose to reanalyze these data for three key reasons. First, the expatriate literature
does not have a history of applying corrections for range restriction, and this example demon-
strates how range-restriction corrections can be applied in settings other than personnel selec-
tion research. Second, the studies included in these meta-analyses used a variety of adjustment
and personality measures, often with varying numbers of items, and frequently did not report
standard deviations. This meta-analysis is thus typical of many literatures in organizational
research and allows us to demonstrate the reliability-based u ratio methods described in Table
1. Third, the expatriate literature offers an opportunity to showcase how range-restriction
corrections can be applied in a way that accounts for the effects of range variation on SD,
without changing mean p, much like how researchers who use validity generalization in
personnel selection are interested in accounting for artifactual variation due to predictor
measurement error but are not interested in correcting the mean effect size for predictor
measurement error. The expatriate literature lacks a clear or distinct target population, so
range restriction’s impact on mean effect sizes is not of substantive interest, but correcting
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for the impact of range variation on SD, could add value by accounting for more artifactual
variance in meta-analyses.

Methods
Meta-Analytic Sample

Data for these meta-analyses were drawn from Harari et al. (2018). These authors reported a meta-
analysis of relations between the Big Five personality traits and multiple dimensions of expatriate
adjustment—the degree to which expatriate employees feel adapted to their new location in terms of
everyday errands and tasks (“general adjustment”), interacting with host-country nationals
(“interactional adjustment”), their new work roles (“work adjustment”), and overall adjustment (a
composite of the other three dimensions; Black & Gregersen, 1991). Harari et al. found small to
moderate relationships between each of the Big Five traits and each dimension of expatriate adjust-
ment (p ranged .13—.30 across traits and adjustment dimensions). However, most correlations were
associated with substantial residual variability in correlations across samples (mean SD, = .11,
range .00—.17), suggesting the presence of moderators. Harari et al. corrected for measurement error
in both personality and adjustment, but did not correct for differential variability (range restriction/
enhancement) across samples. It is plausible that some of the included samples are more homo-
genous in terms of personality. Similarly, it is plausible that some contexts may be easier to adjust to,
leading to less variability on adjustment than in other contexts. Accordingly, it is possible that some
(or much) of the estimated residual variability is due to differential variability on personality and/or
adjustment. We tested this hypothesis by reanalyzing their meta-analyses of adjustment with the
three traits most commonly discussed in relation to adjustment—emotional stability, openness, and
extraversion (Albrecht, Ones, & Sinangil, 2018; Ones, Sinangil, & Wiernik, 2018).9

Analyses

In our reanalyses, we corrected for both measurement error and range variation in both variables.
Reliability coefficients were reported in each study. The appropriate unrestricted reference population
for expatriate adjustment—personality relations is unclear (e.g., the general population, domestic man-
agers, expatriates across all contexts; Kostal, Wiernik, Albrecht, & Ones, 2018), so we chose to correct
only for artifactual variability, to not adjust p, and to compute u ratios using Approach 4 in Table 1.
We compared each sample to either norm samples for its personality and adjustment measures or the
samples in which the scales were originally developed. If a study reported an SD and used the full set
of items for the scale with the original number of response scale points, we computed a u ratio using
SDs and formula 2a in Table 1. If a study did not report an SD, used an abbreviated scale, or used a
different number of response scale points as were used in the norm/development sample, we computed
a u ratio using reliability coefficients and formula 2b in Table 1.'° We centered the u ratio distribution
for each construct around 1.0 using formula 3 in Table 1. Based on the simulation results, we
conducted meta-analyses correcting for BVIRR using the residualized artifact distribution method,
and we compared these results to those obtained correcting only for measurement error. By design, the
mean u ratio was 1.0 for each variable, with the random-effects SDs of the u ratio distributions equal to
.243 for emotional stability, .200 for openness, .275 for extraversion, .210 for overall adjustment, .179
for general adjustment, .219 for interaction adjustment, and .174 for work adjustment.

Results

Meta-analytic results are shown in Table 4. When correcting for measurement error alone, all
personality—adjustment relations showed substantial residual variability (SD,, ranged .11-.18, mean
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= .14). When differential variability across samples was also accounted for using the BVIRR
correction, SD,, estimates decreased by an average of 21% (range 6%—45%; mean variance decrease
= 37%, range 11%—70%), with SD, now ranging .06—.15 (mean = .11). Correcting for BVIRR had
the largest impact for extraversion. For example, when correcting for measurement error only, the
credibility interval for extraversion—general adjustment correlations ranged from small to quite large
values (.14—.44). In contrast, when indirect range variation was accounted for, the credibility interval
spanned consistently moderate values (.21-.37), indicating less potential influence for moderators
(cf. Wiernik, Kostal, Wilmot, Dilchert, & Ones, 2017). Impacts for the other two traits were smaller.

Discussion

Our reanalysis of Harari et al.’s (2018) data shows how range-restriction corrections can help to
account for additional sources of artifactual variance even when the influence of range restriction on
the mean effect size is not of substantive interest. By accounting for the variation in effect sizes
attributable to range restriction, we arrived at SD,, estimates that were, on average, 21% smaller than
when range variation was ignored. The effect of range-restriction artifacts on SD,, also impacts
credibility intervals, allowing for a clearer understanding of the true heterogeneity of effect sizes and
better estimates of the generalizability of relationships.

General Discussion

We presented several new approaches for applying the bivariate indirect range-restriction (BVIRR)
correction in primary research and meta-analyses. We presented a generalized BVIRR formula that
can be used to correct for either range restriction or range enhancement (and allows an approximate
correction for mixtures thereof), a new Taylor series approximation procedure for estimating the
sampling error of BVIRR-corrected correlations, new methods for assigning study weights in
BVIRR individual-correction meta-analyses, and a new Taylor series approximation method for
estimating SD,, in BVIRR artifact-distribution meta-analyses. We demonstrated the accuracy of our
BVIRR methods via simulation and used meta-analyses of expatriate adjustment to illustrate how
our methods can be applied to real data, even when correcting for range restriction is not an obvious
course of action.

The issues addressed in this article converge on the general conclusion that the BVIRR cor-
rection will function very differently than univariate range-restriction corrections (i.e., either
UVDRR/Case II or UVIRR/Case 1V) or corrections for measurement-error alone when applied
in psychometric meta-analysis. The BVIRR correction includes an additive term, which not only
permits BVIRR-corrected correlations to change signs, but also contributes large negative bias to
SD,, estimates in artifact-distribution meta-analysis unless steps are taken to account for sampling
error in artifact distributions. The BVIRR correction’s additive term also means that traditional
methods of assigning study weights in individual-correction meta-analysis produce inaccurate
parameter estimates because traditional weights only work with multiplicative corrections for
which meaningful compound attenuation factors exist. We presented solutions to these issues and
illustrated that our refinements to BVIRR meta-analytic methods dramatically improve the recov-
ery of parameter values. The new methods in this article are broadly relevant to researchers and
practitioners who wish to correct for indirect range restriction, whether in primary analyses or
meta-analyses.

We have shown that accounting for sampling error in artifact distributions dramatically increases
the accuracy of SD,, estimates in artifact-distribution meta-analyses. As SD,, is the most important
indicator of effect-size heterogeneity in the Hunter-Schmidt method of meta-analysis, this finding
has important implications for the accuracy of inferences regarding the generalizability of effects.
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Without accounting for artifact sampling error, researchers using the BVIRR correction have a much
greater risk of errantly concluding that an effect generalizes (i.e., has a homogenous distribution) and
prematurely foreclosing on searches for moderators (cf. job satisfaction’s correlations with neuroti-
cism, extraversion, and openness reported by Le et al., 2016). Artifact-distribution approaches are
the most commonly used psychometric meta-analytic methods because artifact information is incon-
sistently reported in primary studies; thus, our improvements to both interactive and TSA-based
artifact-distribution meta-analytic methods have important implications for how BVIRR will be
used in meta-analyses. The greater accuracy of artifact-distribution versus individual-correction
methods for BVIRR meta-analyses also counters common beliefs among researchers that
individual-correction methods are inherently superior. We recommend using our residualized TSA
artifact-distribution method in BVIRR meta-analyses, even in the rare case that complete artifact
information is available for all studies, and particularly in lieu of ad hoc procedures for using
individual-correction methods with missing data (e.g., mean substitution of missing reliabilities
and/or u ratios or setting missing values to unity). It is also worth noting that TSA-based artifact-
distribution methods are more flexible than interactive methods because they only require one to
know the means and variances of artifacts. This means that researchers can easily combine their
observed artifact distributions with the means and variances of artifact distributions reported in prior
meta-analyses or in technical manuals (assuming, of course, that these artifact distributions represent
relevant populations of participants and measures) and can compute artifact-distribution meta-
analyses using the means and variances of mixture distributions that result from combining all
relevant artifact distributions.

Although the BVIRR correction is particularly vulnerable to the biasing effects of sampling error
in artifact distributions, we recommend that future research evaluate the effects of sampling error in
artifact-distribution meta-analyses using other corrections. Similar gains in precision may be rea-
lized by applying the logic of our procedures to other artifact corrections. Our recommendations and
refinements are supported by simulations and substantive examples that clearly illustrated the
substantial bias that can result from treating BVIRR like other artifact corrections by applying
conventional meta-analytic procedures. To aid in using these methods, functions for applying the
BVIRR correction procedures described in this article to primary analyses and meta-analyses are
implemented in the psychmeta R package (Dahlke & Wiernik, 2018,2017/2019). Simple R functions
for computing BVIRR-corrected correlations and sampling error variances are also available in
Online Appendix H. We strongly encourage researchers to use the BVIRR correction when possible
and we emphasize the importance of correctly modeling BVIRR’s effects on correlations in both
primary studies and meta-analyses.
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Notes

1.

10.

If some samples do not report unrestricted group information, u values computed using Approach 2 are
often substituted, with relatively minor impacts on results (Ones & Viswesvaran, 2003; Sackett & Ost-
gaard, 1994).

. Or if studies frequently change the number of items or response scale points used on a measure.
. As the number of range-variation corrections in use increases, the traditional Roman-numeral-based

nomenclature (Cases I, II, III, IV, V) becomes unwieldy. In this article, we introduce a more descriptive
system of abbreviations to succinctly identify the nature of range variation and the information used to
make corrections (UVDRR [Case II], UVIRR [Case IV], BVIRR [Case V], BVDRR). In this naming
scheme, UV means univariate, BV means bivariate, DRR means direct range restriction, and IRR means
indirect range restriction.

. Following tradition in the range-restriction literature, we use the subscript i to refer to values for the

selected (“incumbent”) group and the subscript a to refer to values for the unselected (target population,
“applicant”) group.

. Le, Oh, Schmidt, and Wooldridge (2016) presented mathematically equivalent equations using estimated

true score u ratios. However, true-score u ratios are unnecessary in the BVIRR correction (their require-
ment in the UVIRR correction stems from UVIRR’s mediation assumption; cf. Alexander, 1990). We
present several mathematically equivalent forms of Equation 1 in Online Appendix A. Eliminating the use
of true-score u ratios simplifies the correction and avoids the common problem that true-score u ratios are
undefined for particular combinations of reliability estimates and observed-score u ratios.

. Although one certainly hopes that observed u ratios reflect the actual effects of selection on the variables of

interest, u ratios are affected by substantial sampling error. This sampling error means that one can obtain u
ratios larger than 1 when range restriction has actually occurred, or one can obtain u ratios smaller than 1
when range enhancement has actually occurred. This uncertainty can be accommodated by meta-analytic
methods described later. When using the BVIRR correction in primary studies, there is no way to correct
individual u ratios for sampling error, so one must simply assume that observed u ratios are meaningful and
use them for corrections; that said, suspicion of one’s u ratios due to small sample size should beget
suspicion of the corrected correlation.

. A derivation of Equation 5 and a description of the logic of the equation are given in Online Appendix B.
. Corrections for univariate range enhancement, however, imply that var,. can be smaller than var,. This is

because range enhancement represents a specific form of oversampling (at the tails of a distribution) and
applying a correction reduces the variance for the sake of estimating a more representative effect size.
Since range-restriction corrections involve extrapolating variance information whereas range-
enhancement corrections involve sacrificing variance information, these corrections have opposite effects
on the sampling variances of the corrected statistics.

. Thank you to Michael Harari for kindly sharing the data to conduct these reanalyses. Additional results are

available from Michael Harari at mharari@fau.edu.

If an abbreviated scale was used, we adjusted rxy, upward using the Spearman-Brown prophecy formula
to reflect the reliability of the full-length scale. For studies that developed their own scales, u was set
equal to 1.0.
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